Food Sc. & Tech.

|                          |           |        |       |             | 1      | 1P/2    | 80/3      | Question Booklet No      | 30 |
|--------------------------|-----------|--------|-------|-------------|--------|---------|-----------|--------------------------|----|
|                          |           | (To    | be f  | illed up by | the co | indidat | e by blue | e/black ball-point pen)  |    |
| Roll No.                 |           |        |       |             |        |         |           |                          |    |
| Roll No.<br>(Write the c | ligits in | ı word | ls)   |             |        |         | •••••     |                          |    |
| Serial No. o             | of OMR    | t Ansv | ver S | heet        | •••••  |         |           |                          |    |
| Day and D                | ate       |        |       |             |        |         |           | (Signature of Invigilato | r) |

### INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- 9. For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

[No. of Printed Pages : 20+2

## No. of Questions/प्रश्नों की संख्या : 120

Time/समय : 2 Hours/घण्टे

**Full Marks/पूर्णांक :** 360

Note/ਜੇਟ: (1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्न करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।

- 1. A volumetric method for estimating fat in milk using sulphuric acid for liberating fat is
  - (1) Babcock and Gerber method (2) Hintoh and Macara method
  - (3) Roese-Gottlieb method (4) Walstra-Mulder method
- 2. Reichert-Meissl number of milk fat varies from
  - (1) 5 to 10 (2) 8 to 15 (3) 17 to 35 (4) 30 to 50

(270)

(P.T.O.)

| 3.    | Viscosity of cow milk at 20 °C is |                   |       |               |        |                 |         |              |
|-------|-----------------------------------|-------------------|-------|---------------|--------|-----------------|---------|--------------|
|       | (1)                               | 1·0-1·5 cp        | (2)   | 1.5-2.0 cp    | (3)    | 2·0-2·5 cp      | (4)     | 2·5-3·0 cp   |
| 4.    | Ma                                | ximum limit of c  | over- | run in butter | r manu | facture is      |         |              |
|       | (1)                               | 10%               | .(2)  | 15%           | (3)    | 20%             | (4)     | 25%          |
| 5.    | Age                               | ing of ice cream  | n miz | x             |        |                 |         |              |
|       | (1)                               | increases bacte   | rial  | count         | (2)    | decreases me    | lting r | esistance    |
|       | (3)                               | decreases whip    | ping  | capacity      | (4)    | maximises ov    | er-run  |              |
| 6.    | As                                | semi-hard cheese  | ; is  |               |        |                 |         |              |
|       | (1)                               | Brick cheese      |       |               | (2)    | Cheddar chee    | ese     |              |
|       | (3)                               | Edam cheese       |       |               | (4)    | Gouda cheese    | 9       |              |
| 7.    | Pro                               | tein content of   | Chec  | ldar cheese i | 5      |                 |         |              |
|       | (1)                               | 13-15%            | (2)   | 22-24%        | (3)    | 32-34%          | (4)     | 38-40%       |
| 8.    | Sog                               | ggy defect of ice | crea  | um is due to  |        |                 |         |              |
|       | (1)                               | low sugar cont    | ent   |               | (2)    | less stabilizer | · conte | ent          |
|       | (3)                               | low over-run      |       |               | (4)    | low total soli  | ds      |              |
| 9.    | Ste                               | eam required to   | evap  | orate 1 kg of | water  | from milk dur   | ing dr  | um drying is |
|       | (1)                               | 0.6-0.7 kg        | (2)   | 1·2-1·3 kg    | (3)    | 1·8-1·9 kg      | (4)     | 2·4-2·5 kg   |
| 10.   | For                               | condensed mill    | c, ho | mogenization  | is car | ried out after  |         |              |
|       | (1)                               | milk clarificatio | n     |               | (2)    | pre-warming     | milk    |              |
|       | (3)                               | condensing mil    | k     |               | (4)    | crystallizing o | conden  | sed milk     |
| (270) |                                   |                   |       |               | 2      |                 |         |              |

| Crystallization in condensed milk is done to                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| (1) remove lactose crystals                                                              | (2) reduce size of lactose crystals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |
| (3) reduce sweetness level                                                               | (4) remove sucrose crystals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Reynolds number for a fluid (density- $-\rho$ ; of V in a tube (inner diameter-D; length | viscosity— $\mu$ ) flowing at mass average velocity<br>—L) and pressure drop across the tube is P is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| (1) $\frac{2D}{V^2 \cdot \rho \cdot L}$ (2) $\frac{D \cdot P}{2\rho \cdot L \cdot V^2}$  | (3) $\frac{D \cdot V \cdot \rho}{\mu}$ (4) $\frac{D \cdot V \cdot \rho}{\mu \cdot L}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
| For streamline flow, Reynolds number                                                     | should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
| (1) less than 2000                                                                       | (2) less than 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
| (3) 2000-3000                                                                            | (4) above 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| Plunger pumps are                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| (1) centrifugal pumps                                                                    | (2) positive displacement pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| (3) reciprocating pumps                                                                  | (4) regenerative pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| A spray nozzle commonly used in spra                                                     | y drier is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| (1) pressure nozzle                                                                      | (2) centrifugal spray nozzle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| (3) rotary atomizer                                                                      | (4) Any of the above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Button formation defect is observed in                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| (1) butter (2) milk powders                                                              | (3) cream (4) condensed milk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| Isoelectric point of casein is                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| (1) 3.8 (2) 4.2                                                                          | (3) 4.6 (4) 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 3                                                                                        | (P.T.O.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|                                                                                          | Crystallization in condensed milk is do<br>(1) remove lactose crystals<br>(3) reduce sweetness level<br>Reynolds number for a fluid (density— $\rho$ ;<br>of V in a tube (inner diameter—D; length<br>(1) $\frac{2D}{V^2 \cdot \rho \cdot L}$ (2) $\frac{D \cdot P}{2\rho \cdot L \cdot V^2}$<br>For streamline flow, Reynolds number<br>(1) less than 2000<br>(3) 2000-3000<br>Plunger pumps are<br>(1) centrifugal pumps<br>(3) reciprocating pumps<br>A spray nozzle commonly used in spra<br>(1) pressure nozzle<br>(3) rotary atomizer<br>Button formation defect is observed in<br>(1) butter (2) milk powders<br>Isoelectric point of casein is<br>(1) 3.8 (2) 4.2 |  |  |  |  |  |  |  |

For homogenizing ice cream mix, pressures (kg/cm<sup>2</sup>) maintained at first and second 18. stages are (3) 110 and 80 (4) 140 and 70 (1) 50 and 100 (2) 80 and 90 NaCl concentration in aqueous phase of butter is 19. (2) 5.0% (4) 15.0% (1) 2.5%(3) 10.0% Cooked flavour in heated milk is due to 20. (1) -proteose peptone (2) -SH groups (3) -serum albumin (4) -SS groups 21. Alcohol ppt. test determines (1) milk adulteration (2) percentage of fat in milk (3) acidity of milk (4) heat stability of milk 22. Meat is a poor source of (1) calcium (2) iron (3) potassium (4) phosphorus 23. During Resorcinol Test, development of green colour in heated samples shows the presence of (1) brominated vegetable oil (2) cottonseed oil (3) saccharin (4) sorbitol 4 (270)

24. Sequence of plant nutrients indicated in fertilizer grade is

- (1) nitrogen, potash and phosphoric acid
- (2) nitrogen, phosphoric acid and potash
- (3) potash, nitrogen and phosphoric acid
- (4) potash, phosphoric acid and nitrogen
- 25. Potash, nitrogen and phosphoric acid content (fresh weight basis) of green manure is about
  - (1) 0.5-0.7%, 0.6-0.8% and 0.1-0.2% respectively
  - (2) 0.1-0.2%, 0.5-0.7% and 0.6-0.8% respectively
  - (3) 0.1-0.2%, 0.6-0.8% and 0.5-0.7% respectively
  - (4) 0.6-0.8%, 0.5-0.7% and 0.1-0.2% respectively
- 26. A handful of loamy soil when squeezed firmly, forms a ball which crumbles upon being rolled. It shows that
  - (1) irrigation is overdue (2) time appropriate for irrigation
  - (3) irrigate after a few days (4) irrigate after few weeks
- 27. For seed multiplication, minimum safe distance between two varieties of often cross-pollinated crops is
  - (1) 30 metres (2) 150 metres (3) 180 metres (4) 270 metres
- 28. Desirable fat-to-SNF ratio of milk for the production of condensed milk is
  - (1) 1:0.44 (2) 1:1.44 (3) 1:2.00 (4) 1:2.44

(270)

(P.T.O.)

Quantity of ice cream (over-run 108.3%) obtained from 2592 kg ice cream mix (sp. grav. 29. 1.08) is (1) 5000 L (2) 5500 L (3) 6000 L (4) 6500 L Abscisic acid is 30. (1) Gibberellin (2) Auxin (3) Retardant (4) Inhibitor 31. Main drying zone of a spray drier is within (1) 30 cm of nozzle (2) 16.0 cm of nozzle (3) centre of drier chamber (4) near bottom of drier chamber 32. In HTST method FDV diverts improperly pasteurized milk to (1) float control balance tank (2) storage tank (3) regeneration section (4) final heating section 33. Most suitable salt for softening water with calcium hardness is (1) sodium hexa meta phosphate (2) sodium carbonate (3) sodium bicarbonate (4) sodium tetraphosphate 34. Maximum limit for anhydrous emulsifier/stabilizers in processed cheese is (1) 10% (2) 8% (3) 6% (4) 4% 35. For cheddar cheese manufacture, casein-to-fat ratio is adjusted to  $(1) \quad 0.7$ (2) 0.9(3) 1·3 (4) 1.5

| 36.   | Eye formation is a desirable characteristics in |                                              |  |  |  |  |  |  |
|-------|-------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
|       | (1) Cheddar cheese                              | (2) Swiss cheese                             |  |  |  |  |  |  |
|       | (3) Limburger cheese                            | (4) Brick cheese                             |  |  |  |  |  |  |
| 37.   | In condensed milk, sugar concentrati            | ion in aqueous phase should range from       |  |  |  |  |  |  |
|       | (1) 50.4 to 52.5%                               | (2) 54.5 to 56.5%                            |  |  |  |  |  |  |
|       | (3) 62·5 to 64·5%                               | (4) 68·5 to 70·0%                            |  |  |  |  |  |  |
| 38.   | Speed of cream separation can be in             | creased by                                   |  |  |  |  |  |  |
|       | (1) smaller radius of fat slobules              |                                              |  |  |  |  |  |  |
|       | (2) less difference in density between          | n skim milk and fat                          |  |  |  |  |  |  |
|       | (3) lower viscosity of skim milk                |                                              |  |  |  |  |  |  |
|       | (4) slow bowl speed                             |                                              |  |  |  |  |  |  |
| 39.   | Constituent present in much less qu             | antity in Channa than in Khoa is             |  |  |  |  |  |  |
|       | (1) fat (2) lactose                             | (3) protein (4) minerals                     |  |  |  |  |  |  |
| 40.   | Constituent most significantly different        | nt between kulfi and ice cream is            |  |  |  |  |  |  |
|       | (1) fat                                         | (2) sugar                                    |  |  |  |  |  |  |
|       | (3) incorporated air                            | (4) proteins                                 |  |  |  |  |  |  |
| 41.   | Heterofermentative lactobicilli can tol         | lerate up to                                 |  |  |  |  |  |  |
|       | (1) 5% ethanol (2) 8% ethanol                   | (3) 12% ethanol (4) 20% ethanol              |  |  |  |  |  |  |
| 42.   | Ice cream hardening is done at                  |                                              |  |  |  |  |  |  |
|       | (1) $-5$ °C or less (2) $-10$ °C or les         | ss (3) $-15$ °C or less (4) $-20$ °C or less |  |  |  |  |  |  |
| (270) |                                                 | 7 (P.T.O.,                                   |  |  |  |  |  |  |

| 43. | Cow milk required to produce 1 kg butter is about |                             |        |                   |       |                 |         |                      |  |
|-----|---------------------------------------------------|-----------------------------|--------|-------------------|-------|-----------------|---------|----------------------|--|
|     | (1)                                               | 18 kg                       | (2)    | 23 kg             | (3)   | 28 kg           | (4)     | 33 kg                |  |
| 44. | Am<br>terr                                        | ount of air incorr<br>ns of | porat  | ed into food prod | luct  | which are basic | ally fo | oams is expressed in |  |
|     | (1)                                               | bulk density                | (2)    | foamability       | (3)   | over-run        | (4)     | porosity             |  |
| 45. | Eut                                               | tectic mixture of           | sodi   | ium chloride solu | utior | ı is            |         |                      |  |
|     | (1)                                               | 17% NaCl and                | 83%    | water             | (2)   | 20% NaCl and    | 80%     | water                |  |
|     | (3)                                               | 23% NaCl and                | 77%    | water             | (4)   | 26% NaCl and    | . 74%   | water                |  |
| 46. | Mel                                               | lting point of eu           | tectio | c ice is          |       |                 |         |                      |  |
|     | (1)                                               | -21 °C                      | (2)    | –24 °C            | (3)   | –27 °C          | (4)     | –30 °C               |  |
| 47. | Fin                                               | al eutectic point           | of i   | ce cream is close | e to  |                 |         |                      |  |
|     | (1)                                               | 40 °C                       | (2)    | -45 °C            | (3)   | –50 °C          | (4)     | -55 ℃                |  |
| 48. | Sar                                               | diness in ice cr            | eam    | is caused by      |       |                 |         |                      |  |
|     | (1)                                               | denaturation of             | mill   | k proteins        | (2)   | formation of la | arge id | ce crystals          |  |
|     | (3)                                               | crystallization o           | of lac | tose              | (4)   | crystallization | of su   | crose                |  |
| 49. | Мо                                                | nosaccharides co            | onstit | tuting a molecul  | e of  | lactose are     |         |                      |  |
|     | (1)                                               | glucose and glu             | cose   | :                 | (2)   | galactose and   | gluco   | se                   |  |
|     | (3)                                               | galactose and g             | alact  | tose              | (4)   | glucose and fr  | uctos   | e                    |  |
|     |                                                   |                             |        |                   |       |                 |         |                      |  |

| 50.   | An intermediate product formed during            | g etha | nolic fermentation of sugars is       |
|-------|--------------------------------------------------|--------|---------------------------------------|
|       | (1) acetic acid                                  | (2)    | galacturonic acid                     |
|       | (3) lactic acid                                  | (4)    | pyruvic acid                          |
| 51.   | An intermediate compound formed du conditions is | uring  | caramelization of sugars under acidic |
|       | (1) 2,3-diketogulonic acid                       | (2)    | furfural                              |
|       | (3) hydroxy methyl furfural                      | (4)    | oxalic acid                           |
| 52.   | Lactose chloride number of milk is               |        |                                       |
|       | (1) 0.5-2.0 (2) 1.5-3.0                          | (3)    | 2·5-4·0 (4) 3·5-5·0                   |
| 53.   | Constituent contributing most towards            | s cook | ed flavour in dairy products is       |
|       | (1) lactoalbumin                                 | (2)    | lactoglobulin                         |
|       | (3) alpha casein                                 | (4)    | beta casein                           |
| 54.   | Corn protein is deficient in                     |        |                                       |
|       | (1) lysine                                       | (2)    | lysine and methionine                 |
|       | (3) tryptophan                                   | (4)    | tryptophan and lysine                 |
| 55.   | Protein requirement (g per kg body we            | eight  | per day) of an Indian adult is        |
|       | (1) 1.0 g vegetable protein                      | (2)    | 1.0 g egg protein                     |
|       | (3) 1.2 g egg protein                            | (4)    | 1.2 g vegetable protein               |
| (270) | q                                                | )      | (P.T.O.)                              |
| · /   | -                                                |        |                                       |

- **56.** A method of preservation in which food is heated to destroy vegetative forms of microorganisms followed by germinating spores into vegetative forms and reheating to destroy the later is called
  - (1) appertization (2) broiling (3) Tyndallization (4) uperization
- 57. Microorganism referred to as FS1518 is
  - (1) Bacillus coagulans (2) Bacillus stearothermophilus
  - (3) Clostridium sporogens (4) Clostridium butyricum
- 58. A fatty acid essential for human being is
  - (1) arachidonic acid (2) elaidic acid
  - (3) Linoleic acid (4) linolenic acid
- 59. Enzymes present in pancreatic juice of humans are
  - (1) trypsin, lipase and enterokinase (2) trypsin, amylase and enterokinase
  - (3) trypsin, lipase and amylase (4) trypsin, lecithinase and amylase

60. Percentage of total energy provided by dietary fat in the Indian diet is

(1) 10-30 (2) 20-40 (3) 25-50 (4) 30-60

61. Death usually follows when loss of water from human body is about

(1) 5% (2) 10% (3) 15% (4) 20%

(P.T.O.)

62. Following chemical structure is of



- (1) D-glucose(2) L-ascorbic acid(3) D-fructose(4) glucoronic acid
- 63. Consumption of vegetable oil adulterated with argemone oil causes

|     | (1) | dropsy            | (2)  | paralysis         | (3)  | sleepiness         | (4)  | throat cancer      |
|-----|-----|-------------------|------|-------------------|------|--------------------|------|--------------------|
| 64. | Avi | din present in eş | gg b | inds              |      |                    |      |                    |
|     | (1) | biotin            | (2)  | iron              | (3)  | thiamin            | (4)  | trypsin            |
| 65. | Spo | oilage microorgan | ism  | s with minimum    | wat  | ter activity requi | irem | ent for growth are |
|     | (1) | halophilic bacte  | ria  |                   | (2)  | moulds             |      |                    |
|     | (3) | osmophilic yeas   | t    |                   | (4)  | xerophilic fung    | i    |                    |
| 66. | In  | most of the puls  | es,  | a limiting amino  | acio | 1 is               |      |                    |
|     | (1) | alanine           | (2)  | glycine           | (3)  | lysine             | (4)  | methionine         |
| 67. | Ar  | nicroorganism pr  | odu  | cing toxin in foo | ds p | prior to ingestion | ı is |                    |
|     | (1) | Salmonella        |      |                   | (2)  | Shigella           |      |                    |
|     | (3) | Staphylococcus    |      |                   | (4)  | Trichineela spir   | alis |                    |

11

Ergot is a mycotoxin produced on rye and other cerelas by 68. (2) Aspergillus flavus (1) Claviceps puripurea (4) Penicillium molds (3) Aspergillus parasiticus Votator is a/an 69. (3) evaporator (4) heat exchanger (2) filter press (1) centrifuge 70. Thiobarbituric acid test is used to determine (2) oxidative rancidity (1) hydrolytic rancidity (3) volatile acidity (4) protein breakdown 71. Flat sour spoilage in canned non-acid foods is caused by (1) Bacillus stearothermophilus (2) Bacillus cereus (3) Bacillus subtilis (4) Bacillus mequaterium 72. Sulphide stinker in canned foods is due to (2) Clostridium pasteurinum (1) Clostridium botulinum . (4) C. perfringens (3) D. nigrificans 73. Hard swell of canned foods is caused by (2) B. subtilis (1) B. coagulans (3) C. pasteurinum (4) C. thermosaccharolyticum 74. Beta oxalyl amino alanine is found in (1) soybeans (2) cotton seeds (3) Khesari dal (4) Green gram (270)

12

| 75.   | A so       | ybean protein is                                |       |                         |       |          |                |                |          |  |  |  |
|-------|------------|-------------------------------------------------|-------|-------------------------|-------|----------|----------------|----------------|----------|--|--|--|
|       | (1) §      | glycinin                                        | (2) ફ | gluten                  | (3)   | zein     | (4)            | kafirin        |          |  |  |  |
|       | <b>D</b> + | ito-motho                                       | d of  | food preservatio        | m     |          |                |                |          |  |  |  |
| 76.   | Bact       | Bacteriostatic method of food preservation      |       |                         |       |          |                |                |          |  |  |  |
|       | (1)        | 1) destroys all bacteria                        |       |                         |       |          |                |                |          |  |  |  |
|       | (2)        | 2) extends stationary phase of bacterial growth |       |                         |       |          |                |                |          |  |  |  |
|       | (3)        | kills all pathoge                               | nic t | acteria only            | •     |          |                |                |          |  |  |  |
|       | (4)        | extends lag pha                                 | se of | bacterial grow          | in    |          |                |                |          |  |  |  |
| 77.   | Full       | form of GMP is                                  | •     |                         |       |          |                |                |          |  |  |  |
|       | (1)        | Good Manufactu                                  | ıred  | Product                 | (2)   | Good     | Milk Product   | t              |          |  |  |  |
|       | (3)        | Good Milled Pro                                 | duct  |                         | (4)   | Good     | Manufacturi    | ng Practices   |          |  |  |  |
|       |            |                                                 |       |                         | •     |          | iu             |                |          |  |  |  |
| 78.   | Imp        | roper venting of                                | reto  | ort during therm        | ial p | rocess   | ing results if | 1              |          |  |  |  |
|       | (1)        | higher retort te                                | mper  | ature                   |       |          |                |                |          |  |  |  |
|       | (2)        | lower retort ten                                | npera | ature                   |       |          |                |                |          |  |  |  |
|       | (3)        | lower vacuum i                                  | nside | e canned produ          | ct    |          |                |                |          |  |  |  |
|       | (4)        | higher vacuum                                   | insi  | de canned prod          | uct   |          |                |                |          |  |  |  |
|       | ~1         | · · · · · · · · · · · · · · · · · · ·           |       | anat grow and n         | rodu  | ice toxi | in in canned f | oods with pH   | below    |  |  |  |
| 79.   | Clo        | stridium bolulinu                               | m ca  | mot grow and p          | 1040  |          |                | u 5.0          |          |  |  |  |
|       | (1)        | 4·8                                             | (2)   | 4.9                     | (3)   | 5.0      | (-             | •) 5.2         |          |  |  |  |
| 80    | Cof        | actor coenzyme                                  | invo  | lved in oxidativ        | e de  | carbox   | ylation of py  | ruvic acid is  |          |  |  |  |
|       | 001        |                                                 | (0)   | <b>0</b> • <sup>†</sup> | (2)   | TOD      | . (4           | 4) PFK         |          |  |  |  |
|       | (1)        | NADPH                                           | (2)   | Ca                      | (3)   | 111      | ,              | ,              |          |  |  |  |
| 81.   | Me         | tabolic water pro                               | duce  | d per day in an         | adul  | t huma   | an by oxidatio | n of food is n | early    |  |  |  |
|       | (1)        | 200 ml                                          | (2)   | 400 ml                  | (3    | ) 600    | ml (·          | 4) 800 ml      |          |  |  |  |
| (080) | (1)        | 200                                             | (-)   | 10                      | •     | •        |                |                |          |  |  |  |
| (270) |            |                                                 |       | 13                      |       |          |                |                | (F.1.0.) |  |  |  |

| 82.   | An amino acid esse                      | ntial for infants is             |                             |                              |     |
|-------|-----------------------------------------|----------------------------------|-----------------------------|------------------------------|-----|
|       | (1) alanine                             | (2) arginine                     | (3) glycine                 | (4) histimine                |     |
| 83.   | Pellagra disease in                     | human is caused l                | by the deficienc            | y of                         |     |
|       | (1) thiamine                            | (2) riboflavin                   | (3) niacin                  | (4) folic acid               |     |
| 84.   | 500 kg milk of 7.5% efficiency of cream | fat is separated to separator is | obtain 70 <sup>.</sup> 5 kg | cream of 52.5% fat. Separati | ion |
|       | (1) 93.5%                               | (2) 97.6%                        | (3) 98·7%                   | (4) 99·1%                    |     |
| 85.   | pH of canned produ                      | uct which can be p               | processed in boi            | iling water is below         |     |
|       | (1) 5.2                                 | (2) .4.8                         | (3) 4.5                     | (4) 4·2                      |     |
| 86.   | Countercurrent tun                      | nel driers give deh              | ydrated food pr             | oducts with                  |     |
|       | (1) more case hard                      | lening                           | (2) lower mo                | pisture content              |     |
|       | (3) lesser browning                     | š                                | (4) better re               | hydration properties         |     |
| 87.   | Information require                     | d to determine rela              | ative humidity o            | of drying air is             |     |
|       | (1) dry bulb tempe                      | erature                          | (2) wet bulb                | temperature                  |     |
|       | (3) wet bulb depre                      | ssion                            | (4) dry and                 | wet bulb temperatures        |     |
| 88.   | If $D_{121} = 1.4$ and Z                | =10 °C for spores                | of PA3679, D <sub>11</sub>  | 1 will be                    |     |
|       | (1) 0·21 min                            | (2) 0·45 min                     | (3) 4·10 mir                | n (4) 14.00 min              |     |
| 89.   | A good refrigerant t                    | for a cold storage s             | should have                 |                              |     |
|       | (1) very low boiling                    | g point                          | (2) low spec                | ific heat                    |     |
|       | (3) high latent hea                     | t of vaporization                | (4) low later               | nt heat of vaporization      |     |
| (270) |                                         | 1                                | 4                           |                              |     |

| 90.   | Common ammonia-based refrigeration                                                                               | plant | is are                                    |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|--|--|--|--|--|--|--|
|       | (1) vapour compression systems                                                                                   |       |                                           |  |  |  |  |  |  |  |
|       | (2) vapour absorption systems                                                                                    |       |                                           |  |  |  |  |  |  |  |
|       | (3) Planten-Munters continuous systems                                                                           |       |                                           |  |  |  |  |  |  |  |
|       | (4) electrolux gas refrigeration systems                                                                         |       |                                           |  |  |  |  |  |  |  |
| 91.   | Separation of a constituent of a liquid mixture by partial vaporization of the mixture and recovery of vapour is |       |                                           |  |  |  |  |  |  |  |
|       | (1) distillation (2) evaporation                                                                                 | (3)   | drying (4) pervaporation                  |  |  |  |  |  |  |  |
| 92.   | A machine not associated with the ma                                                                             | nufa  | cture of tin cans is                      |  |  |  |  |  |  |  |
|       | (1) reformer                                                                                                     | (2)   | hardening machine                         |  |  |  |  |  |  |  |
|       | (3) flanger                                                                                                      | (4)   | double seamer                             |  |  |  |  |  |  |  |
| 93.   | Capacity of refrigeration plant, (express<br>966120 kcal/hr of head is                                           | ed a  | s refrigeration tons) capable of removing |  |  |  |  |  |  |  |
|       | (1) 80.5 (2) 121.2                                                                                               | (3)   | 291.0 (4) 335.0                           |  |  |  |  |  |  |  |
| 94.   | Drum drying is based primarily on                                                                                |       |                                           |  |  |  |  |  |  |  |
|       | (1) conduction heating                                                                                           | (2)   | convection heating                        |  |  |  |  |  |  |  |
|       | (3) radiation heating                                                                                            | (4)   | conduction and radiation heating          |  |  |  |  |  |  |  |
| 95.   | Foods dried in a very dry and hot air                                                                            | exhit | pit                                       |  |  |  |  |  |  |  |
|       | (1) excessive shrinkage                                                                                          | (2)   | case hardening                            |  |  |  |  |  |  |  |
|       | (3) non-enzymatic browning                                                                                       | (4)   | enzymatic browning                        |  |  |  |  |  |  |  |
| (270) | 15                                                                                                               | 5     | (P.T.O.)                                  |  |  |  |  |  |  |  |

96. Drying rate during falling rate period depends mainly upon

- (1) dry bulb temperature of air (2) rate of water diffusion within food
- (3) velocity of drying air (4) wet bulb depression

97. In the process of instantization, small product particles are

- (1) agglomerated
- (2) clumped
- (3) free fat removed from product surface
- (4) treated product with wetting agents

98. 'Decimal reductions' required for safe thermal processing is equivalent to

(1) D/F ratio (2) F/D ratio (3) 12D value (4) 5D value

- 99. ICMR recommendations for daily dietary intake of vitamins A and C by an adult Indian man are
  - (1) 350 µg retinol and 25 mg vitamin C
  - (2) 450 µg retinol and 25 mg vitamin C
  - (3) 600 µg retinol and 40 mg vitamin C
  - (4) 750 µg retinol and 40 mg vitamin C
- 100. Percentage of nitrogen absorbed from intestinal tract that is actually retained by the body is
  - (1) biological value (2) chemical value
  - (3) net protein utilization (4) protein efficiency ratio

| 101.  | Microorganism not significants in foods packed under modified atmosphere is |                        |                     |                           |          |  |  |  |
|-------|-----------------------------------------------------------------------------|------------------------|---------------------|---------------------------|----------|--|--|--|
|       | (1) Bacillus coagul                                                         | ans                    | 2) Bacillus         | Bacillus subtilis         |          |  |  |  |
|       | (3) Clostridium botulinum (4                                                |                        |                     | ) Clostridium pasteurinum |          |  |  |  |
| 102.  | After drying, moist                                                         | ure content within d   | d fruits is e       | equalized by a process    | called   |  |  |  |
|       | (1) equilibrating                                                           | (2) finishing          | 3) diffusing        | (4) sweeting              |          |  |  |  |
| 103.  | Crop producing ma                                                           | ximum protein per l    | ctare of land       | 1 is                      |          |  |  |  |
|       | (1) gram                                                                    | (2) maize              | 3) potato           | (4) rice                  |          |  |  |  |
| 104.  | Best temperature f                                                          | or storage of frozen : | ods is              |                           |          |  |  |  |
|       | (1) 4 °C                                                                    | (2) 0 °C               | 3) –10 °C           | (4) –18 °C                |          |  |  |  |
| 105.  | Dose of $\gamma$ -radiation                                                 | used for disinfection  | of food grain       | is is                     |          |  |  |  |
|       | (1) 5000-15000 ra                                                           | d                      | <b>2) 10000</b> -10 | 00000 rad                 |          |  |  |  |
|       | (3) 100000-500000                                                           | ) rad                  | 4) about 25         | about 2500000 rad         |          |  |  |  |
| 106.  | Maximum dose of                                                             | ionizing radiation pe  | itted for foc       | d irradiation is          |          |  |  |  |
|       | (1) $10 \times 10^6$ rep                                                    | (2) 15 M rad           | 3) 25 K roe         | entgen (4) 10 K Gy        |          |  |  |  |
| 107.  | Chief type of cells                                                         | in the edible part of  | lost of the f       | ruits and vegetable are   |          |  |  |  |
|       | (1) epidermal cells                                                         |                        | 2) parenchy         | zma cells                 |          |  |  |  |
|       | (3) phloem                                                                  |                        | 4) xylem            |                           |          |  |  |  |
| (270) |                                                                             | 17                     |                     |                           | (P.T.O.) |  |  |  |

108. One Gray (Gy) of radiation is equivalent to

- (1) 100 rad
- (2) 100 roentgen
- (3) 100 rep
- (4)  $10^{-5}$  joules absorbed per g of absorbing material

109. Diameter of mouth of glass jar is more than or equal to

(1) 16 mm (2) 22 mm (3) 28 mm (4) 34 mm

110. Rate of water diffusion within food during drying determines

- (1) extent of case hardening
- (2) rate of drying during constant rate period
- (3) rate of drying during falling rate of phase
- (4) final water activity of the product

111. Radiation not permitted for food irradiation is

- (1) X-rays (2) γ-rays
- (3) β-rays (4) fast moving electrons

112. Microwave frequencies permitted for ISM purposes are

- (1) 915, 2450, 5800 and 22150 MHz (2) 500, 4000, 10000 and 25000 MHz
- (3) 915, 2450, 8500 and 25000 MHz (4) 915, 2450, 18715 and 32500 MHz

Reference temperature and Z value associated with symbol  $F_0$  of process lethality for 113. canned food are (2) 121 °C and 18 °C (1) 100 °C and 10 °C (4) 121 °C and 10 °C (3) 100 °C and 18 °C Green colour of vegetables is preserved by using blanching water containing 114. (2) cupric ions (1) ferric ions (4) zinc ions (3) magnesium ions Thermal arrest time for quick frozen foods is below 115. (4) 60 min (2) 40 min (3) 50 min (1) 30 min 116. GRAS expresses quality of (2) food equipment (1) food additives (3) frozen foods (4) oil, spices and honey 117. Full form of APEDA is (1) Agro-Products Export Development Authority (2) Agricultural Food Products Export Development Agency (3) Agricultural and Processed Food Products Export Development Authority (4) Agricultural and Food Products Export Development Authority 118. A symptom of heat injury in onion is (1) light brown colour on outermost scale (2) dehydrated scales (3) transluscent scales (4) rotting (P.T.O.) 19 (270)

119. Separating fruits and vegetables on the basis of degree of acceptability is

(1) classification
(2) grading
(3) sorting
(4) rejecting

120. Rate of thawing frozen food

(1) is more than rate of freezing
(2) is less than rate of freezing
(3) is equal to rate of freezing
(4) cannot be compared with rate of freezing

.

\*\*\*

# अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं० और ओ० एम० आर० पत्र सं० की प्रविष्टियों में उपरिलेखन की अनुमति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।